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We report a comparative study of the vibrational and rovibrational partition functions using several quantum
and classical statistical mechanics approaches. The calculations refebta Hhe conclusions are anticipated

to be valid also for larger systems.

1. Introduction

The partition function is an essential construct to interpret
the macroscopic world in terms of the properties of atoms and
molecules. Its crucial role is indeed well-established both in
thermodynamics and chemical kinetics, as shown by the
considerable effort involved in developing accurate methods for
its calculationt-?

In quantum statistical mechanics, the canonical partition
function assumes the form

0= epE) (1)

wheref = 1KT, T is the temperaturd; is the energy eigenvalue
associated to quantum statendk is the Boltzmann constant.
For an ideal gas made & identical molecules, the Botn
Oppenheimer approximation leadsfo

1
(N)!

where ¢;, 0., and g, are the translational, electronic and
rovibrational partition functions for an individual molecule.
Although g; can be calculated using the perfect gas formalism
andge is unity if no electronic excited states are involveg,
assumes the sum-over-states form

2=—(q0)" )

qu(T) = zg| exp(_ﬁEi) (3)

where E; denotes now a bound molecular rovibrational state
andg; is the corresponding degeneracy factor. To use eq 3, one
then requires the complete rovibrational spectra of the molecule,
which limits the applicability of such an approach to small

where

il
Ix(), X(s)] = Lﬁ HIx(s), x(g)] ds ®)

is the action of the classical energy functional corresponding
to the pathx(s) in imaginary (thermodynamic) time= it, and

the notation f; @x(9)[-+-] implies that integration over all
paths is constrained to begin and end at the same podufging
Trotter's formula® the discrete path integral (DPI) representation
of eq 4 assumes the fotrf
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whereh is the Planck constant divided byr2P is the number
of discretizations o8, n is the number of degrees of freedom,
u is the reduced mas¥/(x) is the potential energy calculated
at pointxi, andxP*! = x. It is important to point out that the
expression for the potential terms in eq 6 is not unique, although
all forms lead in principle to the same restiitChandler and
Woolyned? have shown that there is a strict isomorphism
between the DPI representation and classical statistical mechan-
ics; thus, within this context, the DPI calculation can be regarded
as a classical one. Actually, the use of the FPI formulation
associated with Monte Carlo techniques has experienced
enormous advances in computational thermodynamics (see
ref 1 and references therein).

In classical statistical mechanics, the sum-over-states is
replaced by the corresponding multidimensional phase space

molecules (notable examples are applications to the benchmarkntegral. Thus, the classical rovibrational partition function

systems B 5 and HOS).

An alternative and appealing approach to the calculation of
ovr comes from Feynman'’s path integral (FPI) formulation of
guantum statistical mechanié$According to such a formalism,
the partition function assumes the form

q,(T) = f dx L “Ox(3) exp{ —SIX(9), X(9} (4)
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assumes the form

QM= [ ex(~pr@p} dacp  (7)

whereH(q,p) is the classical Hamiltoniarg is the vector of
generalized coordinates, ar is the vector of conjugate
momenta; we will assume as reference throughout this work
the energy of the minimum of the potential energy surface
(curve). Note that in some situatidids!® the classical picture
gives results accurate enough to make quantum calculations
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unnecessary, whereas in others (for which the sum over stategphase space integral in eq 7 require the use of a numerical
is still computationally out of reach), one can think of coping technique. However, for diatomic molecules, the integration over
with the breakdown of classical statistical mechanics (especially momenta can be done analytically by considering such restric-
at low temperatures) by using quantum corrections. For recenttions on the energy. For the vibrational partition function, eq 7
work which discusses how to account for the deviation of the gives
classical rovibrational partition function from the exact quantum "
reT:uIt, the reader is referrgd to refs-11P0. . q,(T = (2/4'2(7‘) exp(BEd)f «

requently, the integration over momenta in eq 7 can be h o

carried out as a simple Gaussian integral, i.e., by integrating Y V(=BV'(r) 2
explicitly the momenta betweenc and+. In this case, the exp{ —AV' (N} [Zj; exp(-p) dp] dr
rovibrational partition function factorizes as the product of a 1 . s

term depending only on the temperature by the classical :IeXp(BEd)L exp{ —pV'(r)} erf[=pV'(r)] "< dr
configurational integrdf?® (11)

1 whereas for the rovibrational partition function, one &4
6(T) = ./ expl—pV()} g (8) P
/e

_8Vn o
wherel = (Bh%2zu)Y? is the thermal wavelength. For diatomic o (T) = JE exp(BEd)j; exp{ —pV' (N} x
molecules, if only vibrational motion is considered, one has Jr
n= 1 and eq 8 yields {7” erf[—BV' (N]Y2 — [-BV (N2 exp{ﬂV’(r)}} ridr (12)

1 oo
q,(T) = Zﬁ) exp{ —BV(r)} dr 9) whereV'(r) = V(r) — Eq, erf(-++) is the error functio® ando
is the internuclear distance at whisf(r) = 0.

with r being the internuclear distance. However, if rovibrational 1€ major goal of this work is to discuss the implications of
motion is considered) = 3 and the integration over the polar USing the FPI quantum formulation in eq 6 and the classical
anglesd and¢ leads to approaches in eqs-92 to calculate the vibrational and

rovibrational partition functions. Thus, we hope to shed some
A7 oo 5 light on a simple but often overlooked question. As an example,

q,(T) = 3o exp{ —pV(r)}redr (10) we have chosen thesHnolecule. A strong motivation for this

selection relates to the importance of the molecular hydrogen
¢ high-temperature thermodynamics in astrophy%ié&Thus, we
compare the results reported in this work with Irwff'accurate
polynomial fit of g, to spectroscopic data. The plan of the paper
is as follows. Section 2 gives the details of the calculations,
where the results ofy, and q,, are also discussed. Some
conclusions are in section 3.

Note that the usual textbook derivation (eq 8) is formally correc
for systems having an infinite number of bound states. This is
the case for potential functions which do not assume a finite
value at large distances (e.g., harmonic or quasiharmonic
models) and when molecular motion is confined to a finite
volume. An example of use of eq 8 is the calculation of the
equilibrium constant for reactions of the typetXCeo == X@Cso
where X is an halogen atom trapped inside the fullerene cage
(e.g., ref 21). The H, potential energy curve is based on the EHFACE2U

However, for systems having a finite number of discrete model?”28 Using this curve, we have calculated the exact
quantum states (such as those satisfying the conditiop-lim guantum mechanical vibrational partition function in eq 3 and
V(q) = =), the use of the configurational integral fails at high the quantum DPI formula in eq 6 foar = 1. Moreover, we
temperatures. The main reason for such a failure is the fact thathave computed the classical partition functions in eqs 9 and
integration over momenta to obtain eq 8 implicitly considers 11. The details concerning the various calculations are given
the molecule to have an infinite number of states. In other words, next.
one includes contributions from dissociated species which are  We begin with the calculation of the vibrational spectrum
formally divergent as they scale linearly with the volume of {E}. For this, we have employed the discrete variable repre-
the system. This feature arises also in the FPI formulation, wheresentation (DVR) methdd3! as proposed by Colbert and
an integration over momenta is performed as simple GaussianMiller,2° using a grid ofN = 500 equally spaced points over
integrals to obtain eq 6 (see Chapter 1 of ref 11). In fact, the integration intervalg, b) = (0.0, 25.@c). The calculated
Schentet has recently discussed the same problem in the study levels were then used to carry out the sum-over-states in eq 3
of the enthalpy of formation of the water dimer, whereas Truhlar up to the last bound state supported by the potential energy
and co-workerd2have pointed out such a feature in calculations curve (the outer turning point referring to this state occurs at
of molecular rovibrational partition functions employing the r = 6.066%k).
Fourier path integral Monte Carlo method. To calculate the DPI integral in eq 6 (with= 1), we have

To overcome the above problem (common to both classical employed the transfer matrix grid method by following the
and FPI formulations), it is necessary to limit the involved procedure described in refs 32 and 33. The values of the
integrations to regions which correspond to bound-state situa-parameters [see eqs 2:8.7 of ref 32] used to perform such
tions. Although this is an open problem within the FPI calculation areAx = 0.025y, andN = 599, corresponding to
framework?2-23in classical statistical mechanics, it can be taken a radial integration interval ofa( b) = (0.0, 15.@p). The
into account by requiring that the hypervolume of integration parameterP has been optimized at each temperature until
in eq 7 is limited to phase space regions for which the internal convergence has been reached. Such an optimization was done
energy is smaller than the dissociation energys ®(q,p) < by varying P until g, reached its minimum value at each
Eq. In general, for a polyatomic molecule, calculations of the temperature. In fact, such a value should provide an upper bound

2. Results and Discussion
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Figure 1. Vibrational partition function of Hmolecule: ) quantum Figure 3. Classical rovibrational partition function of;Hnolecule:

results, eq 3; (- - -) classical results with no restrictions to bound states (—) eq 12; (- - -) eq 10 withrmax = 15.089; (+*+) eq 10 withrma =
as in eq 9; @) classical results with restrictions to bound states as in 25.08g; (-*-) eq 10 withryax = 50.080. Except for the results shown by
eq 11; @) FPI results, eq 6. the solid line, all calculations are with no restrictions to bound states.

0.4 in the classical configurational integral of eq 9 and quantum
DPI method of eq 6 scale linearly withnax However, the
analysis shows that the error does not depend,qr when

0.3 evaluating the classical partition function using eq 11. Thus,
eq 6 can be regarded as a very good approximation for low-
temperature regimes but cannot reproduce the correct results at

& 02 high temperatures. We conclude this paragraph by noting that
< we also carried exploratory calculations using the simple method
i proposed by Mielke et & to avoid consideration of dissociated
0.1

species within the FPI formulation. Their method consists of
neglecting all paths for which the energy of the configuration
space sample poinx, is above the energy for dissociation. In
0 ' ' ‘ y ' fact, following their own suggestioi,we have instead neglected
10 20 30 40 50 60 70 S X .
contributions from paths where the potential energyiatabove

Tmax the dissociation limit. Our test calculations have shown little
Figure 2. Error relative to the quantum results as a function of the or no improvement specially at high temperatures, which is
|nperatom.|c.d|stancerx forqoatT = 9000 K: () qlassmal resu]ts probably due to having ignored the kinetic energy in such a
with restrictions to bound states as in eq 1:1<)(classical results with criterion

o restrictions to bound states as in eq 9; (- - -) FPI results, eq 6. We now address the calculation of the rovibrational partition

to the exact result, because this is in principle obtained for function. Figure 3 plots the classiogk calculated from egs 10
infinitesimal steps of the imaginary timé (— ), whereas ~ and 12 over the temperature range (3500 = 7500 K). The
numerical truncation errors are expected to be positive [because/@rous broken lines refer to distinct values of the upper
of appearing as the argument of the exponential in eq 6] and INtegration limit ¢max = 15.0, 25.0, 50.&) in eq 10, whereas
increase after the step size reaches some minimum value.  the solid curve refers to eq 12 usingax = 25.0ao. It is seen
The classical calculations referring to eqs 9 and 11 were that, for a given temperature, the point of divergence from the
carried out using a standard numerical integrator, with the COITect classical curve (shown by the solid line) is a function
integration limits fixed atmax = 15.08 ando = 0.776(. of the upper |nt¢grat|on Ilm!t: it occurs at increasingly _hlg_her
The values ofg, over the range of temperatures of astro- temperatures with decreaSI_mgax. In fact, as the potenpa! is
physical interegf are shown in Figure 1. Clearly, the classical N0t bound for — o, the available volume approaches infinity
qu based on eq 11 is seen to converge to the quantum resultdS "max _ .
with increasing temperature. Conversely, the classical vibrational Finally, Table 1 compares the various calculagdvith the
partition function from eq 9 is shown to diverge with temper- €St available esnmat@sgallcu_la_ted from spectroscopic data.
ature. Figure 1 further shows that the FPI formulation gives 1hese correspond to Irwin's fitting formifa
accurate results at low and moderate temperatures but diverges 8
at high onesT_z 7000 K) Whe_re the classical partition functlon_ ngM=TS A(n Ty (13)
calculated using eq 9 also diverges from the accurate classical
counterpart. This can be attributed to the fact that both
formulations consider the dissociated molecule as active speciesvhere 1000< T/K < 16 000 and the coefficient®y are
which contribute to the partition function. This remark is further adjustable parametet$Note that Irwin’s values were calculated
exploited in Figure 2 by plotting, as a function of the upper by taking as reference the zero-point energy of the system
limit of integration {may for T = 9000 K, the error relative to  (Eo = 2167.1794 cm?). Thus, his results have been multiplied
the sum-over-states result obtained by using egs 6, 9, and 11by exp(pSEo). Because of spin statistics, the sum-over-states
To correctly apply the transfer matrix grid method of DPI, the has been weighted using the proper nuclear spin fdéfan
calculations for the variousnax values were carried out by fixing  turn, the classicaty, has been calculated from eq 12 using
Ax and the optimun® value while varying\. Clearly, the errors rmax = 25.08p, and then multiplied by!/, to account for the

/ao

— 00,
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TABLE 1: Rovibrational Partition Function for H when the focus is on comparisons with partition functions
'F\2/|0|9?U|e Caécullfirt]?dv\\’/VIthk_Dlgerglm MetT(;SSi I(A) Quigtum obtained from bound-state eigenvalue calculations or spectro-
esults [eg ; This Work; ( 26 assical Results [eq 12], scopic data as in the present work, but it remains an open
This Work; (C) Irwin Results - ) :
guestion whether only genuine bound states should be consid-
Y ered if other types of measurements are to be addressed. Clearly,
TIK A B C an answer to this problem is outside the scope of the present
1000.0 0.272 0.940 0.272 work.
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